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The structure of the �-(Al,Si)CuFe approximant phase is determined by a

single-crystal X-ray diffraction study and compared to the ideal structure

obtained by the perpendicular shear method of the parent icosahedral phase. It

is shown that the local environments (typical atomic clusters) of the two phases

are similar and expand signi®cantly farther than the size of the unit cell of the

approximant. The orbit Al(2) issuing from the theoretical icosahedral model

corresponding to the inner dodecahedron of the Mackay-type cluster is not

found in the approximant and is replaced by a partially occupied inner

icosahedron with an unusually large Debye±Waller factor.

1. Introduction

This paper deals with the atomic structure determination of

the �-(Al,Si)CuFe phase that is the simplest periodic

approximant of the parent F-type icosahedral phase of the

(Al,Cu,Fe) system. This phase of nominal composition

Al55Si7Cu25.5Fe12.5 is a cubic Pm�3 structure with a lattice

parameter a � 1:2312 �2� nm. It has been recognized as the

1=1 cubic approximant of i-AlCuFe with respect to both its

geometry and its physical properties, which are indeed very

similar to those of the parent icosahedral phase (Quivy et al.,

1996). Complementary to the recent study of Yamada et al.

(1999), the goal of the present work (see also Puyraimond et

al., 2001) is to establish the details of the structural similarities

between the � and icosahedral phases in the framework of the

perpendicular shear technique introduced in the early 1990's

by JaricÂ & Qiu (1990) for deciphering the average atomic

structure of the quasicrystal from the knowledge of the

approximant(s).

The paper is organized in two main parts. The ®rst one is

devoted to the description of the experimental conditions of

the preparation of �-(Al,Si)CuFe single crystals, the X-ray

data collection, the re®nement technique and a short analysis

of the re®ned structure in comparison with the previous

results of Yamada et al. (1999). The second part deals with the

modeling of the cubic phase using the shear method in 6D

space. There, we present the basic 6D model of the i-AlCuFe

phase with its main atomic clusters and show how the typical

atomic clusters are expected to connect in the cubic phase. We

®nally discuss the characteristics of the re®ned structure in the

framework of the ideal parent quasicrystalline phase and give

some hints of how to slightly modify the quasicrystal model to

take into account the few discrepancies between the model

and the diffraction results revealed in the present study.

2. Structure analysis of the a-(Al,Si)CuFe phase

2.1. Experimental conditions

An alloy of nominal composition Al55Si7Cu25.5Fe12.5 was

prepared from the pure elements (Al 99.99, Si 99.999, Cu

99.999, Fe 99.99%) by induction melting. The entire ingot was

remelted by induction heating in a silica nozzle and rapidly

quenched by planar ¯ow casting on a rotating copper wheel,

under a pure helium atmosphere. The ¯akes were subse-

quently annealed over 11 days in an alumina crucible at

1068 K. At this temperature, the alloy is partially melted and

large single crystals of the �-(Al,Si)CuFe phase (which can

reach one millimetre in size) grow in the liquid. Single crystals

are eventually mechanically extracted from the matrix and

carefully crushed into smaller parts suitable for X-ray inves-

tigations. Several crystalline pieces were selected under an

optical microscope and checked for singularity by preliminary

oscillation and Weissenberg diffraction techniques. The

crystals display cubic symmetry and no extinction condition

was observed. The best single crystal of dimension

0.18 � 0.10 � 0.07 mm was chosen for data collection at room

temperature on an Enraf±Nonius CAD-4 automatic diffrac-

tometer using monochromatic Mo K� radiation (� �
0:71069 AÊ ). Accurate lattice parameters were determined

[a � 1:2312 �2� nm] by least-squares re®nements of the

angular positions of 25 re¯ections collected and automatically

centered on the diffractometer. Pro®le analysis of a few angle

re¯ections indicated that !ÿ � scans were the most appro-
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priate. 3093 re¯ections were measured in the hkl octant

(0 � h; k; l � 17) of the cubic cell in the range 2 � � � 30�.
During data collection, intensities of three standard re¯ections

were checked every hour without any signi®cant ¯uctuation.

Data were ®rst corrected for background and for Lorentz±

polarization effects, then a numerical absorption correction

was applied (� � 13:7 mmÿ1, transmission factors from 0.464

to 0.320) using the procedure provided by SHELX76 (Shel-

drick, 1992; Sheldrick et al., 1993). Equivalent re¯ections,

according to the Pm3 space-group symmetry, were averaged to

Rint � 4:15%. The ®nal data set consists of 957 re¯ections of

which 585 verify the I � 2��I� condition.

2.2. Structure refinement and description

All our attempts to solve the structure ex nihilo with direct

methods using SHELXS or SHELXS97 (Sheldrick, 1992;

Sheldrick et al., 1993) have been unsuccessful. The structure

was eventually solved starting from the theoretical approxi-

mant obtained by the shear method locked-in at the even

nodes of the 6D model. This will be discussed in x3. Re®ne-

ments by full-matrix least squares were carried out using the

program SHELXL97 (Sheldrick, 1992; Sheldrick et al., 1993).

Atomic positions and isotropic thermal parameters for all

atoms were re®ned before the occupancy factors. The ®nal

structure is given in Table 1.

During the re®nement process, if one position appears to be

incompletely ®lled, then its site occupation factor is freed but

the fractional occupation factors are constrained to sum up to

unity. One can notice in Table 1 that six atomic sites are

considered with mixed occupation by different chemical

species (chemical disorder), these positions are then re®ned.

Finally, 76 parameters were re®ned to agreement factors

R1 � 4:65 and wR2 � 12:06% with a goodness of ®t S of 1.053

for 957 re¯ections. The reconstructed Fourier electron differ-

ence map indicates that the residual electron density varies

Table 1
Structure of the (1=1) approximant of the �-(Al, Si)CuFe phase resulting from the re®nement process performed with the SHELX97 program on the
diffraction data.

The last column represents the Debye±Waller factor Beq in AÊ 2. The starting structure is obtained by the perpendicular shear method with a lock-in point at the
even nodes of the 6D F lattice as discussed in the text.

Atom Wyckoff position Occupancy x y z Beq (AÊ 2)

Fe(1) 1�a� 1 0 0 0 1.1 (1)
Al(2) 12�j� 10.7 0 0.098 (1) 0.1635 (9) 13.9 (7)
Cu/Al(3) 24�l� 17.1/6.9 0.1848 (1) 0.1172 (1) 0.2982 (1) 1.27 (3)
Cu/Al(4) 6�e� 4.25/1.75 0 0 0.3741 (3) 1.50 (7)
Fe(5) 12�m� 12 0 0.1987 (1) 0.3251 (1) 0.78 (3)
Al/Fe(6) 12�k� 10.3/1.7 0.6656 (2) 0.5 0.3986 (2) 0.57 (6)
Al(7) 24�l� 24 0.1912 (2) 0.3100 (1) 0.3846 (2) 0.51 (4)
Al(8) 6�h� 6 0.1149 (4) 0.5 0.5 0.24 (7)
Cu/Al(9) 12�k� 9.6/2.4 0.1805 (1) 0.5 0.3023 (1) 0.53 (4)
Cu(10) 6�g� 6 0 0.3113 (2) 0.5 0.76 (4)
Al/Fe(11) 12�m� 11.6/0.4 0 0.5998 (2) 0.3165 (3) 0.64 (8)
Al/Fe(12) 12�k� 11.6/0.4 0.1115 (2) 0.1263 (2) 0.5 0.78 (7)

Table 2
Comparison of the re®ned structures of the (1=1) approximant of the �-(Al, Si)CuFe phase between the results presented in this paper and those of
Yamada et al. (1998).

The atomic species M corresponds to a mixture M = 89 at.%Al=11 at.%Si. The electron density of each Wyckoff position is given by the product of the atomic
number Z of the atom(s) with the corresponding occupancy factor(s).

Present results Yamada et al. (1998)

Wyckoff Atom Occupancy Local electron density Atom Occupancy Local electron density

1�a� Fe(1) 1 26 Cu(1) 0.89 25.81
12�j� Al(2) 10.7 139.1 M(2) 4.68 61.35
12�j� M�2a� 2.16 28.32
8�i� M�2b� 1.28 16.78
6�e� M�2c� 1.26 16.52
24�l� Cu/Al(3) 17.1/6.9 585.6 Fe/M(3) 20.16/3.84 574.5
6�e� Cu/Al(4) 4.25/1.75 146 Cu/M(4) 4.08/1.92 143.49
12�m� Fe(5) 12 312 Cu/H(5) 9.24/2.76 304.14
12�k� Al/Fe(6) 10.3/1.7 178.1 M/Cu(6) 10.08/1.92 187.83
24�l� Al(7) 24 312 H(7) 24 314.64
6�h� Al(8) 6 78 H/Cu(8) 5.58/0.42 85.33
12�k� Cu/Al(9) 9.6/2.4 309.6 Cu/M(9) 10.32/1.68 321.30
6�g� Cu(10) 6 174 Cu/H(10) 5.46/0.54 165.42
12�m� Al/Fe(11) 11.6/0.4 161.2 M/Cu(11) 11.64/0.36 163.04
12�k� Al/Fe(12) 11.6/0.4 161.2 M/Cu(12) 11.52/0.48 164.95



randomly between 1.44 and ÿ1.27 e AÊ ÿ3. The re®ned stoi-

chiometry (Al,Si)61.8Cu25.49Fe11.32 agrees fairly well with the

nominal composition Al55Si7Cu25.5Fe12.5. There are 137.7

atoms per unit cell of �-(Al,Si)CuFe (to be compared with 138

atoms per unit cell in �-AlMnSi).

As shown in Table 2, our results are in good agreement

with those of Yamada et al. (1999) with resulting composition

(Al,Si)60.85Cu24.29Fe14.86 obtained by Rietvelt re®nement

[program RIETAN (Izumi & Ikeda, 2000)] on powdered

X-ray diffraction where the �-AlMnSi phase has been used as

the starting structural model (Hiraga et al., 1997; Sugiyama et

al., 1998; Yamada et al., 1998, 1999). We observe that both

structures are described with the same kind of Wyckoff posi-

tions [with the exception of the Al(2) position that will be

discussed in the second part] although both the re®nement

processes and the initial structures were signi®cantly different.

The main differences between the two studies are the kind of

atomic species that are attributed to the various Wyckoff

positions. These differences are unavoidable using X-rays

where the actual measurement involves the electron density:

calculating the average electron density,
P
�iZi for each

Wyckoff position, where i is the atomic species, Zi its atomic

number and �i its occupancy factor, we observe that both

structures give qualitatively the same local electron density.

More generally, any atomic distribution leading to the same

local electron densities is an acceptable solution for the

structure determination with X-ray scattering.

3. Modeling the cubic a-(Al,Si)CuFe approximant phase

The previous re®nement has been carried out from an initial

structure that has been calculated from the quasicrystal using

the perpendicular shear technique (JaricÂ & Qiu, 1990). Our

quasicrystal model for i-AlCuFe is extracted from the work

of Katz & Gratias (1995), on 6D representation of F-type

icosahedral phases and modi®ed according to the suggestions

of Elser (1996, 1998) in the distribution of the atomic species.

We will denote this model for short as the KGE model.

3.1. The starting icosahedral model

The icosahedral quasicrystal is de®ned in a 6D space by

cutting along a 3D subspace denoted the parallel space Ek, a

set of atomic surfaces (also called acceptance windows) that
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Figure 2
Atomic species distribution of Al, Cu and Fe on the three main surfaces of Fig. 1 as proposed by Katz & Gratias (1995) and modi®ed by Elser (1996). This
decoration has been shown to give satisfactory results with respect to composition, density and available diffraction data of the AlCuFe icosahedral
phase.

Figure 1
From left to right: the three main atomic surfaces in E? of the KGE
model located respectively at n, n0 and bc.
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are polyhedra parallel to the complementary orthogonal 3D

space called E? and periodically distributed in the unit cells of

an underlying 6D F (face-centered) lattice. The structure is

characterized by the three main atomic surfaces shown in Fig.

1. Choosing as reference frame the primitive 6D lattice of

length two times smaller than the one of the F lattice, we have:

(i) a large triacontahedron attached at the even nodes

�0; 0; 0; 0; 0; 0�, hereafter denoted n;

(ii) another large triacontahedron but truncated along a

®vefold axis attached at the odd nodes �1; 0; 0; 0; 0; 0�, here-

after denoted n0;
(iii) a small triacontahedron [de¯ated by (1� �) with

respect to the previous ones] attached at the odd body centers

1=2�ÿ1; 1; 1; 1; 1;ÿ1�, denoted bc.

The even body centers bc0 are left empty. The atomic species

distribute in these basic atomic surfaces according to Fe and

Al on n, Al and Cu on n0 and Cu on bc as shown in Fig. 2.

3.2. The shear method

To generate a (periodic) approximant, we apply a shear of

the 6D lattice in E? so that the 6D lattice points � � �xk; x?�,

where xk and x? denote the components of � on respectively

Ek and E?, transform according to:

x0k � xk; x0? � x? ÿ "xk; �1�
where " is the 3� 3 shear matrix de®ning the approximant and

given by

" � A?Aÿ1
k : �2�

Here, Ak and A? designate the 3� 3 matrices, the columns

of which are respectively the parallel and perpendicular

components of the three 6D lattice nodes that de®ne the unit

cell of the approximant.

The cubic stratum is obtained by choosing the unit cell

A � fq; p; 0;ÿq; p; 0g, B � fp; 0; q; p; 0;ÿqg and C �
f0; q; p; 0;ÿq; pg, where p and q are coprime integers. In the

present case, the structure corresponds to p � q � 1 and is

thus called the `1=1' cubic approximant; the shear matrix

reduces to

" � ÿ�ÿ3Id; �3�
where Id designates the 3� 3 identity matrix. The unit cell

is given by A � ��2�2; 0; 0� and cyclic permutations where

� is the usual scaling constant (Cahn et al., 1986),

� � A6D=�2�2� ���1=2. The lattice parameter is given by

a � 2��2.

A major difference between quasicrystals and approximants

is that in the case of quasicrystals the projection in E? of the

6D lattice is uniformly dense in the perpendicular space,

whereas in the case of periodic approximants these projections

of the 6D lattice nodes collapse, after shear, into a discrete set

of points (Gratias et al., 1995; Quiquandon et al., 1999), thus

forming a 3D lattice in E?. Hence, the local isomorphism

property of the quasicrystal disappears and several different

approximant structures with different symmetry can be

generated according to the location of the trace of Ek in E?.

Only some speci®c cuts correspond to high-symmetry struc-

tures associated with locations in 6D corresponding to special

points [called high-symmetry `lock-in' points (Gratias et al.,

1995)] of the initial structure. This crucial point is exempli®ed

in the simple 1D example shown in Fig. 3. At the top of the

®gure, the 2D representation of a 1D quasicrystal is given

where the vertical lines are the atomic surfaces �. At the

bottom, a periodic approximant is obtained by a rational

perpendicular shear of the 2D lattice. Two locations of the cut

space Ek are drawn: the ®rst one, denoted (1), passes through

the origin of the 2D unit cell and is represented by the plain

circles, the second one, denoted (2), passes through the body

center of the 2D unit cell and is represented by the open

circles. These two structures are different: for example,

structure (1) is `stable' with respect to perpendicular ¯uctua-

tions of the cut whereas structure (2) generates numerous

atomic jumps because, in that case, the cut passes exactly

through several boundaries of the atomic surfaces.

For the icosahedral case, the projection of the 6D sheared

lattice into E? leads to a 3D cubic lattice with a unit cell of

parameter a? � ��3ÿ �� along the three twofold axes

common to the cubic m�3 and icosahedral point groups. Using

Figure 3
(Top) A 1D quasicrystal with its representation in 2D space. The vertical
line segments parallel to E? represent the atomic surfaces denoted �.
Any horizontal cut leads to a locally isomorphic quasiperiodic sequence.
(Bottom) Periodic 1D approximants are obtained after a rational shear
along E?: different 1D structures are obtained according to where the cut
space is located with respect to E?. Two of them with symmetry �1 are
shown.



the Cahn et al. (1986) indexing scheme and, as demonstrated

in Quiquandon et al. (1999), a 6D lattice point

�n1; n2; n3; n4; n5; n6� projects in E? after the shear associated

with the p=q cubic stratum, on the node �U;V;W� given in

cubic unit-cell coordinates by:

U � p�n4 ÿ n1� � q�n2 � n5�;
V � p�n6 ÿ n3� � q�n1 � n4�;
W � p�n5 ÿ n2� � q�n3 � n6�;

8<: �4�

where, here, p � q � 1. Thus, the 6D lattice points n and n0

project in E? on 3D nodes with an even sum of coordinates

U � V �W and the points bc and bc0 on nodes with an odd

sum of coordinates. Therefore, 3D cuts passing through n and

n0 (as well as bc and bc0) special points generate the same

structure because the translation �1; 1; 1; 0; 0; 0� that relates n

to n0 (and bc to bc0) is the �1; 1; 1�=2 translation of the cubic

unit cell in Ek: the two structures are identical but simply

displaced by �1; 1; 1�=2. Hence, the projected 3D lattice in E?
of the 6D F lattice is a `double' f.c.c. lattice (NaCl type) of

parameter 2a with n (n0) sites at the vertices and bc (bc0) sites

at the body centers. Therefore, the cubic structures with point

group m�3 (Quivy et al., 1996; Yamada et al., 1999; Hiraga et al.,

1997) are obtained only when the cut passes through two

different special points: the vertices n (n0) or the body centers

bc (bc0). This generates a total of only two possible cubic

structures of point group m�3: the nÿ 1=1 cubic approximant

and the bcÿ 1=1 cubic approximant. Building both structures,

we observed that, contrarily to the n structure, the bc cubic

structure could not lead to a satisfactory convergence and has

therefore been discarded.

Beyond the symmetry aspect, a second strong geometrical

constraint in the shear method is that the shear transformation

should preserve the way nearby atomic surfaces connect so as

to keep a constant topology (Oguey et al., 1988; Kramer, 1988;

Katz, 1988, 1989, 1990). This leads to distortion of the atomic

surfaces and reshaping them after shear along the facets of the

elementary 3D cube of the projected 6D lattice in E? as

illustrated in Figs. 4 and 5. It must be noticed that, because of

these distortions that generate numerous new facets, the

vertices of which fall exactly on the nodes of the projected

sheared lattice in E?, arbitrary decisions have to be taken for

choosing which atomic species should be attached to those

sites. We were guided in our choice by the overall stoichi-

ometry and decided not to introduce partial occupancy factors

for these `critical points' in the initial structures. The resulting

ideal structure of the nÿ 1=1 approximant is presented in

Table 3.
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Figure 4
The basic atomic surfaces of the KGE model after the perpendicular shear corresponding to the 1=1 cubic stratum. Transformation of the invariant 2D
threefold planes from icosahedral to cubic symmetry. On the right, typical connections between the AS's observed in E? after shear.
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3.3. Bergman and Mackay clusters

Almost 95% of the atomic sites of the F-type icosahedral

AlCuFe and AlPdMn alloys belong to a network of Bergman-

type 33-atom B clusters (center + icosahedron + dodecahe-

dron) located on the even nodes of a 3D Penrose tiling and

connected by edges, complemented by Mackay-type 50-atom

M clusters (center + partial dodecahedron + icosahedron +

icosidodecahedron) as discussed by Elser (1996, 1998),

Gratias, Quiquandon & Katz (2000) and Gratias, Puyraimond,

Quiquandon & Katz (2000) (see Fig. 6). These clusters are

generated by triacontahedral atomic surfaces in E? located at

the special points of little group m�3�5 of the 6D F lattice. With

respect to the large triacontahedron located at n, these are:

(i) the even and odd nodes n and n0 with a �ÿ3 scaled tri-

acontahedron for the M and M0 clusters;

(ii) the odd and even body centers bc and bc0 with a �ÿ2

scaled triacontahedron for respectively the B and B0 clusters.

An exhaustive study of how these clusters distribute in the

icosahedral phases is to be found in Gratias, Puyraimond,

Quiquandon & Katz (2000). With respect to the chemical

decoration of the present model, it can be shown that:

(i) the B clusters distribute in 15 (slightly) different

chemical con®gurations that correspond to the 15 kinds of

B±B edge-by-edge connections on the Penrose network;

(ii) the M clusters have one unique chemical con®guration;

(iii) the M0 clusters distribute on six different chemical

con®gurations consistently with the geometry of the B-cluster

network.

As will be discussed later, the triacontahedral atomic surfaces

generating the B and M clusters transform in the 1=1 cubic

phase, respectively, into elementary cubes for the B's and

single points for the M's. Thus, M clusters are generated only

for the cubic structures corresponding to cuts that pass exactly

through even nodes of the 3D projected lattice in E?, which is

precisely the case we are interested in. The atomic positions

Table 3
Ideal structure of the nÿ 1=1 approximant with space group Pm�3 after the shear process applied on the KGE model of the parent icosahedral phase
AlCuFe [�5ÿ 3��=2 � 00729; �2ÿ ��=2 � 01910; �ÿ3� 2��=2 � 01180; �ÿ1� ��=2 � 03090; 2ÿ � � 03820; �6ÿ 3��=2 � 05729).

For consistency with Yamada et al. (1998, 1999) settings, the site n0 has been chosen as origin.

Atom Wyckoff position x y z

Fe(1) 1 0 0 0
Fe(2) 12 �5ÿ 3��=2 0 �2ÿ ��=2
Cu(3) 24 �2ÿ ��=2 �ÿ3� 2��=2 �ÿ1� ��=2
Cu(4) 6 0 0 2ÿ �
Al(5) 12 0 �2ÿ ��=2 �ÿ1� ��=2
Fe(6) 1 1=2 1=2 1=2
Al(7) 12 �6ÿ 3��=2 1=2 �ÿ1� ��=2
Al(8) 24 �2ÿ ��=2 �ÿ1� ��=2 2ÿ �
Al(9) 6 �ÿ3� 2��=2 1=2 1=2
Cu(10) 12 �2ÿ ��=2 1=2 �ÿ1� ��=2
Cu(11) 6 0 �ÿ1� ��=2 1=2
Al(12) 12 0 �6ÿ 3��=2 �ÿ1� ��=2
Al(13) 12 �ÿ3� 2��=2 �ÿ3� 2��=2 1=2

Table 4
Wyckoff positions (�2) for the basic orbits of the M (M0) clusters in the 1=1 cubic approximants; in each case, the origin is chosen at the center of the
cluster.

Type Symmetry 6D vector Wyckoff position (�2)

nÿ n0 12 �6;ÿ3� : �1; 0; 0;ÿ1;ÿ1; 0� �5ÿ 3�; 0; 2ÿ ��
8 �6;ÿ3� : �0; 1;ÿ1; 1; 0; 0� �ÿ3� 2�;ÿ3� 2�; 3ÿ 2��

nÿ n0 12 �2; 1� : �0; 0; 1; 0; 0; 0� �0; 2ÿ �;ÿ1� ��
nÿ n 6 �4; 0� : �0; 1; 0; 0;ÿ1; 0� �0; 0; 2�2ÿ ���

24 �4; 0� : �0; 0; 0; 0; 1; 1� �ÿ1� �;ÿ2� �;ÿ3� 2��
Extended
nÿ n0 24 �6; 1� : �0; 1; 0; 1; 0; 1� �ÿ3� 2�;ÿ3� 2�; 1�

24 �6; 1� : �1; 0; 0;ÿ1; 0;ÿ1� �2�2ÿ ��; 2ÿ �; 1ÿ ��
12 �6; 1� : �0; 1;ÿ1; 0; 0;ÿ1� �ÿ1� �; 0; 4ÿ 3��

Next . . .
nÿ bc 12 �3; 3� : �1; 1; 1;ÿ1;ÿ1; 1�=2 �2ÿ �; 0; 1�

8 �3; 3� : �1; 1;ÿ1; 1; 1;ÿ1�=2 �ÿ1� �;ÿ1� �; 1ÿ ��
nÿ n 24 �8; 0� : �1; 0; 1;ÿ1;ÿ1; 0� �5ÿ 3�; 2ÿ �; 1�

24 �8; 0� : �0; 1;ÿ1; 1; 1; 0� �ÿ4� 3�;ÿ3� 2�; 1ÿ ��
12 �8; 0� : �1;ÿ1; 0;ÿ1; 1; 0� �2�2ÿ ��; 0; 2�ÿ2� ���

n0 ÿ bc 12 �3; 4� : �1; 1; 1; 1;ÿ1; 1�=2 �0;ÿ1� �; 1�
nÿ n 6 �4; 4� : �0; 0; 1; 0; 0; 1� �0; 0; 2�ÿ1� ���

24 �4; 4� : �0; 1; 0;ÿ1; 0; 0� �1; 1ÿ �; 2ÿ ��
. . .



corresponding to the B and M clusters in the approximant are

given in Tables 4 and 5, respectively.

In the icosahedral case, B, B0, M and M0 clusters can be

extended to larger shells to form extended clusters called XM

and XM0 as recently introduced by Duneau (2000) in a search

for a covering cluster of the F-icosahedral AlCuFe phase.

These extended clusters of the icosahedral phase are shown in

the ®rst columns of Figs. 7 and 8.

In the case of the approximant phase, a similar analysis can

be performed that leads to Figs. 7 [around the �0; 0; 0� site] and

8 [around the �1=2; 1=2; 1=2� site]. In both ®gures, the left

column represents the polyhedra present in the extended

clusters of the F-type icosahedral structure, XM and XM0,
respectively. In the central column are the polyhedra obtained

from the ideal approximant as described in Table 3 and the

right column shows the corresponding polyhedra after ®nal

re®nement. The ®nal structure is very close to the initial

theoretical structure with respect to both locations and

chemical species except for two orbits, Al(2) and Al/Fe(6),

that are expected to describe a partially ®lled dodecahedron

Acta Cryst. (2002). A58, 391±403 Puyraimond et al. � (Al, Si)CuFe cubic approximant phase 397

research papers

Figure 6
`Bergman' and `Mackay' atomic clusters are found in complex intermetallic phases such as, respectively, T-(AlMgZn) (Bergman et al., 1957) and
�-(AlMnSi) (Cooper & Robinson, 1966; Guyot & Audier, 1985; Elser & Henley, 1985). The clusters B, B0 and M=M0 are found in F-type icosahedral
quasicrystals and their approximants.

Figure 5
The atomic surfaces corresponding to the various atomic species of Fig. 2
after the perpendicular shear corresponding to the 1=1 cubic stratum.
After shear, the larger copper cell of the atomic surface n0 is transformed
to a point.
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but ®nally end up to be an almost full icosahedron. This

important discrepancy will be discussed later.

Comparing the ideal 1=1 approximant structure and the

icosahedral structure, we ®rst observe that the clusters located

at the �0; 0; 0� and �1=2; 1=2; 1=2� sites of this 1=1 approximant

are similar to respectively the XM0 and XM clusters of the

quasicrystal, even at signi®cantly large distances. Most of the

polyhedra of the 1=1 approximant are polyhedra of the

quasicrystal and in the same order in size with the following

exceptions:

(i) for the XM0 cluster [centered at �0; 0; 0�], the deltoid-

hexecontahedron* (2) of the quasicrystal disappears in the

approximant; a contrario, the deltoid-hexecontahedron* (1)

that is partially occupied in the quasicrystal becomes fully

occupied in the approximant; the icosahedron (2) is partially

occupied in the quasicrystal and becomes fully occupied in the

approximant;

(ii) for the XM cluster [centered at �1=2; 1=2; 1=2�], the

deltoid-hexecontahedron* (1) of the quasicrystal changes

its occupancy factor from the quasicrystal to the approx-

imant.

Comparing now the ideal cubic structure obtained after

shear and the re®ned structure, we observe the following

features:

(i) the position Fe(6) �1=2; 1=2; 1=2� center of the XM

cluster of the ideal structure disappears in the re®ned struc-

ture;

(ii) as already mentioned, the positions Al(2) and Al/Fe(6)

are partial dodecahedra in the ideal structure and transform

into partial icosahedra in the re®ned structure;

(iii) for all others, the relaxation of positions between the

ideal and re®ned structures is at most on the order of 3%.

(iv) the chemical decoration in both cases is globally similar

with the exception of Al(2) in the ®nal structure, which was

expected to be Fe in the ideal structure and a contrario the

®nal position Fe(5) that was initially Al in the ideal structure.

Fig. 9 shows the B and M clusters in both the ideal and the

re®ned structures.

Concerning the cluster connections, it can ®rst be noticed

that they are similar between the approximant (ideal and

re®ned) and the icosahedral structures. However, as expected

because of the lowering of symmetry from icosahedral to

cubic, new con®gurations appear in the cubic case that are not

present in the icosahedral ideal structure especially for B±B

and B±M connections. Indeed, the B clusters of the approxi-

mant overlap and new B±M intersections are observed that

are not present in the icosahedral case. These topological

differences are understandable by considering the underlying

geometry of the acceptance windows (or cells) of the

approximant in E? for the various B and M con®gurations as

shown in Fig. 10 and Table 6.

The most important feature is that all cells in E? corre-

sponding to the various M atomic shells reduce in points,

edges or squares, i.e. in cells that are 0- (vertices), 1- (edges) or

Table 5
Wyckoff positions (�2) for the basic orbits of the B (B0) clusters in the 1=1 cubic approximants; the origin is chosen at the center of the cluster.

Type Symmetry 6D vector Wyckoff position (�2)

B
bcÿ n 12 �3;ÿ1� : �1; 1;ÿ1; 1;ÿ1; 1�=2 �0;ÿ3� 2�; 2ÿ ��
bcÿ n0 12 �3; 0� : �ÿ1; 1; 1; 1; 1; 1�=2 �ÿ3� 2�; 0;ÿ1� ��

8 �3; 0� : �1;ÿ1; 1;ÿ1; 1;ÿ1�=2 �2ÿ �; 2ÿ �;ÿ2� ��
Extended
bcÿ n 12 �7;ÿ1� : �1;ÿ1; 1; 1; 1; 3�=2 �0;ÿ3� 2�;ÿ4� 3��

24 �7;ÿ1� : �1; 1; 1;ÿ3;ÿ1;ÿ1�=2 �2�2ÿ ��; 3ÿ 2�; 2ÿ ��
24 �7;ÿ1� : �ÿ1; 1; 1;ÿ1; 1;ÿ3�=2 �ÿ1� �; 5ÿ 3�; 1ÿ ��

bcÿ n0 12 �7; 0� : �ÿ1; 1; 3;ÿ1;ÿ1;ÿ1�=2 �0; 5ÿ 3�; 1�
24 �7; 0� : �ÿ1; 3;ÿ1; 1; 1; 1�=2 �ÿ4� 3�;ÿ2� �; 2ÿ ��
24 �7; 0� : �1;ÿ1;ÿ1; 1; 3; 1�=2 �ÿ1� �;ÿ3� 2�; 2�ÿ2� ���

bcÿ n 12 �3; 3� : �1; 1; 1;ÿ1;ÿ1; 1�=2 �2ÿ �; 0; 1�
8 �3; 3� : �1; 1;ÿ1; 1; 1;ÿ1�=2 �ÿ1� �;ÿ1� �; 1ÿ ��

bcÿ n0 12 �3; 4� : �1; 1; 1; 1;ÿ1; 1�=2 �0;ÿ1� �; 1�
. . .
B0

bc0 ÿ n 12 �7;ÿ4� : �ÿ1;ÿ1; 3;ÿ1; 1;ÿ1�=2 �0; 5ÿ 3�;ÿ3� 2��
bc0 ÿ n0 12 �3;ÿ1� : �1; 1;ÿ1; 1;ÿ1; 1�=2 �0;ÿ3� 2�; 2ÿ ��
bc0 ÿ n 12 �3; 0� : �ÿ1; 1; 1; 1; 1; 1�=2 �ÿ3� 2�; 0;ÿ1� ��

8 �3; 0� : �1;ÿ1; 1;ÿ1; 1;ÿ1�=2 �2ÿ �; 2ÿ �;ÿ2� ��
bc0 ÿ bc 12 �2; 1� : �0; 0; 1; 0; 0; 0� �0; 2ÿ �;ÿ1� ��
Extended
bc0 ÿ n0 12 �7;ÿ1� : �1;ÿ1; 1; 1; 1; 3�=2 �0;ÿ3� 2�;ÿ4� 3��

24 �7;ÿ1� : �1; 1; 1;ÿ3;ÿ1;ÿ1�=2 �2�2ÿ ��; 3ÿ 2�; 2ÿ ��
24 �7;ÿ1� : �ÿ1; 1; 1;ÿ1; 1;ÿ3�=2 �ÿ1� �; 5ÿ 3�; 1ÿ ��

bc0 ÿ n 12 �7; 0� : �ÿ1; 1; 3;ÿ1;ÿ1;ÿ1�=2 �0; 5ÿ 3�; 1�
24 �7; 0� : �ÿ1; 3;ÿ1; 1; 1; 1�=2 �ÿ4� 3�;ÿ2� �; 2ÿ ��
24 �7; 0� : �1;ÿ1;ÿ1; 1; 3; 1�=2 �ÿ1� �;ÿ3� 2�; 2�ÿ2� ���

bc0 ÿ n0 12 �3; 3� : �1; 1; 1;ÿ1;ÿ1; 1�=2 �2ÿ �; 0; 1�
8 �3; 3� : �1; 1;ÿ1; 1; 1;ÿ1�=2 �ÿ1� �;ÿ1� �; 1ÿ ��

bc0 ÿ n 12 �3; 4� : �1; 1; 1; 1;ÿ1; 1�=2 �0;ÿ1� �; 1�
. . .



2- (faces) dimensional and have zero volume. These kinds of

low-dimension cells would be insigni®cant in the case of a

general icosahedral cut but they are strongly pertinent in the

approximant case because there the cut passes through special

points precisely where these low-dimensional cells are located.

This results in most of the atomic positions of the approximant

being de®ned on the boundaries of B cells that are simulta-

neously the low-dimension cells of the M con®gurations. This

generates new con®gurations where, for example, atoms of the

B inner icosahedra belong to two B clusters because they issue

from points that are located at the exact boundary between

two B icosahedron cells. This is a highly speci®c geometrical

situation where most of the atoms issue from critical boundary

points as shown in Fig. 11 where all atomic positions of the

approximant are drawn in E?. This explains why it is impos-

sible for many Wyckoff positions to unambiguously de®ne

which atomic species they are associated with: they actually

correspond to mixed occupancy of different atomic species.

All but two Wyckoff positions of the ®nal structure fall on

the cubic AS's (atomic surfaces) of the model once localized in

E?. These two sites Al(2) and Al/Fe(6), already mentioned

throughout this paper, correspond to those theoretical

partially occupied dodecahedral orbits that eventually trans-

form into almost fully occupied icosahedra after the re®ne-

ment process. These geometric discrepancies are to be

considered together with the fact that the site Al(2) has an

astonishing high Debye±Waller factor Beq � 13:9 AÊ 2 (usually

close to unity or less). A careful study of the vibrational

ellipsoid of Al(2) presented in Fig. 12 shows that this site is

associated with 12 very ¯at umbrella-like ellipsoids extending

on the sphere containing the icosahedron as if the Al atoms

were delocalized all over the surface of this sphere. In order to

better reveal the differences between the re®ned structure and
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Figure 7
The ®rst column represents the polyhedra of the extended cluster XM0 of
the F-type icosahedral structure. In the other two columns are the
polyhedra of the �-(Al, Si)CuFe structure, located at the (0, 0, 0) site,
corresponding to the M0-type cluster. The distances D and d in nm
correspond respectively to the distances from the center to the external
shell and between the external shells [the 6D lattice parameter of the
ideal model is A = 0.63252 nm deduced from the experimental 3D lattice
parameter a = 1.2312 (2) nm]. The distances of the icosahedral structure
correspond to the phase i-AlCuFe with a 6D lattice parameter A =
0.63146 nm. The symbols * and ** designate respectively a polyhedron
partially ®lled and a mean value.

Figure 8
The ®rst column of the table represents the polyhedra of the extended
cluster XM of the F-type icosahedral structure. In the other two columns
are the polyhedra of the �-(Al, Si)CuFe structure, located at the
(1/2, 1/2, 1/2) site, corresponding to the M-type cluster. The characteristics
of this ®gure are identical to those of the previous one.
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the actual structure, we calculated the reconstructed electronic

Fourier difference map using the actual measured scattering

amplitudes associated with the phases given by the model.

This map is presented in Fig. 13 for the two cuts z � 0 and

z � 0:5. The ®rst column of this ®gure shows the experimental

electron density �exp, the second column shows the calculated

electron density �cal with the re®ned model and the last one

shows the difference between them, �exp ÿ �cal. It can be

noticed that there is a globally good agreement between the

experimental and the calculated maps that is con®rmed by the

difference map for which the scale of the intensity is one order

of magnitude less than the one used in the two ®rst columns.

The ratio between the two scales of intensity is on the order of

magnitude of the reliability factor, i.e. between 4 and 5%. The

contrasts observed in the Fourier difference correspond to

background noise and cannot be related to possibly missing

atomic positions. The only slight differences that can be seen

are to be found in the z � 0 map (see the enlargement inserts)

around the Wyckoff position Al(2) that has this unusually

large Debye±Waller factor. The delocalization seems even

larger with a higher electron density in the experimental case

than in the model enforcing the idea that this site is strongly

topologically disordered. This is reminiscent of the thermal

phason sites in quasicrystals.

In any case, the presence of the questionable Al(2) site [and

Al/Fe(6)] together with the absence of the theoretical site

Fe(6) suggest that the XM and XM0 clusters of the model

should actually be closer to real Mackay clusters (Cooper &

Robinson, 1966; Guyot & Audier, 1985; Elser & Henley, 1985)

than they actually are as generated by the KGE model. This

induces some subtle reshaping of the basic AS's of the model

that can be sketched in two steps as described by Oguey et al.

(1988):

(i) Removing the central atom [site Fe(6)] consists in

excavating the large AS's by a �ÿ3 scaled small triacontahe-

dron, thus leaving a central hole.

(ii) Replacing the partially occupied dodecahedron [sites

Al(2) and/or Al/Fe(6)] by a full icosahedron is slightly more

delicate: we add to the bc AS 12 small triacontahedra located

on the centers of an icosahedron and remove on n0 the cells

that correspond to the partial dodecahedron. This generates

an inner icosahedron in the physical space but with a too large

radius which induces unacceptable distances with the atoms of

Figure 9
B- and M-cluster distributions (a) in the F-type icosahedral structure and
in the nÿ 1=1 cubic approximant, (b) in the ideal structure, (c) in the
re®ned structure. It can be observed that new connections occur between
intersecting B clusters that are not present in the icosahedral structure
(where B clusters connect only along the edges of their external
dodecahedron).

Figure 10
Comparison between the acceptance windows corresponding to the
various atomic shells forming the B and M clusters for the icosahedral
and 1=1 cubic cases. The acceptance windows de®ning the orbits of the M
cluster, all based on the small triacontahedron, are represented in the 1=1
cubic case by points, edges and squares located or passing through special
points.



the outer icosahedron. We therefore relax all these positions

by a factor (�ÿ1 ÿ 1=2) along the ®vefold directions in Ek that

shrinks the inner icosahedron to its actual size.

4. Conclusions

This study shows that there is a global good agreement

between the experimental structure of an approximant and

a theoretical model resulting from a perpendicular shear

applied on the parent quasicrystalline structure. Moreover, it

is possible to ®nd the lock-in point that characterizes the

approximant structure and therefore that determines the

cluster type located at the cell origin. In this way, we can say

that the 1=1 approximant �-(Al,Si)CuFe is a `Mackay-type'

approximant in the sense that, on the one hand, an M0 cluster

is located at the cell origin and an M cluster at the body center

and, on the other hand, the B clusters ± which are still present

in the approximant ± do not connect together the way they do

in the quasicrystal. Irrespective of small distorsions, the major

atomic clusters found in the approximant are those of the

parent icosahedral structure, and we have shown that M, M0, B

and B0 clusters and their extended versions are present in both

structures. It is quite interesting to notice that, even for such

low-order approximants as the 1=1 studied here, their atomic

local environments up to roughly 2 nm in diameter are almost

identical to those of the parent quasicrystal. It is not very

surprising that the electronic and transport properties are so

close between the two phases.

Although the KGE model has been shown to be an

acceptable starting point to investigate the approximant

structure, we have noticed that it fails to reproduce the two

Wyckoff positions corresponding to the inner icosahedra of

the Mackay clusters out of which one has an unusually high
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Figure 12
Vibrational ellipsoid of the Al(2) Wyckoff position.

Figure 11
The Wyckoff positions of the ®nal cubic structure as distributed in E?.
They are almost on the vertices, edges or faces of B cells and on the low-
dimension cells of M con®gurations. These result in atomic positions
belonging simultaneously to various con®gurations and having mixed
chemical occupancies. Two Wyckoff positions Al(2) and Al/Fe(6) fall
outside the AS's of the model.

Table 6
Connections between the different cluster types and atomic positions
with respect to the projected 6D lattice in E? after shear.

Atoms AS Atomic positions in E? Local environments

Fe(1) n0 (0, 0, 0) Center M0

Al(2) n (0,ÿ11, 7)
Cu/Al(3) n0 (1, 1, 2) M0 icosidodecahedron

B dodecahedron (2)
Cu/Al(4) n0 (0, 0, 2) M0 icosidodecahedron

B dodecahedron (2)
Fe(5) n (0, 1, 1) M0 icosahedron

B icosahedron
Al/Fe(6) n0 (0,ÿ11,ÿ7)
Al(7) n (2, 1, 1) M icosidodecahedron

B icosahedron
Al(8) n (0, 0, 2) M icosidodecahedron

B icosahedron (2)
Cu/Al(9) n0 (0, 1, 1) M icosahedron

B dodecahedron (3)
Cu(10) bc (1, 0, 0) Center B
Al/Fe(11) n (1, 0, 3) B icosahedron
Al/Fe(12) n (2, 2, 0) B icosahedron
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Debye±Waller factor value [Beq � 13:9 �7� AÊ 2]. Attributing

this exceptional value to a phason-like phenomenon in the

approximant is plausible although we found no speci®c reason

to select that position with respect to the many others in the

structure that are also generated by points in E? located at the

boundaries of some AS's. Another weakness in the present

X-ray study is the relatively small diffraction contrast between

the atomic species (Al/Si and Cu/Fe) that is not enough to

unambiguously attribute the relative chemical occupancy of

several mixted positions. Very recent results on similar

samples obtained by V. Simonet and F. Hippert by neutron

diffraction and EXAFS studies strongly suggest modifying

some occupancy factors of the present re®ned structure on at

least one Wyckoff position. Beyond these speci®c problems of

the ®ne chemistry distribution on the Wyckoff positions that

are still open and should be solved through carefull com-

parisons between neutron and X-ray data, the present study

has demonstrated the validity of the perpendicular shear

method to design prototypic ideal approximant structures

from the parent quasicrystalline structure. A detailed

description of the main atomic clusters has been performed

showing the very close similarities between the local ordering

of the approximant and the quasicrystal up to 2 nm; the

approximant structure can reasonably be viewed as a periodic

Figure 13
Electron-density maps of the �-AlSiCuFe phase for two different cuts z � 0 and z � 0:5. The ®rst column shows the experimental electronic density �exp,
the second column shows the calculated electronic density �cal and the last one shows the difference between the two, �exp ÿ �cal. (a) and (b) represent
the enlargement at z � 0 of the electron-density map around the Wyckoff position Al(2) for respectively the experimental case and the calculated case.



decoration of speci®c pieces of the quasicrystal developing on

the same Z-module.

We are very pleased to thank our colleagues V. Simonet and

F. Hippert for having informed us of their very interesting

neutron and EXAFS results prior to publication and the very

fruitful discussions.
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